
12 May 2003

Internet data transfer record
between CERN and California

Sylvain Ravot (Caltech)
Paolo Moroni (CERN)

Ravot - Moroni - 212 May 2003

Summary

Internet2 Land Speed Record Contest
New LSR
DataTAG project and network
configuration
Establishing an LSR: hardware and
tuning
Conclusions
Acknowledgements

Ravot - Moroni - 312 May 2003

Internet2 LSR Contest (I)

From http://lsr.internet2.edu:
“A minimum of 100 megabytes must be
transferred a minimum terrestrial distance of 100
kilometers with a minimum of two router hops in
each direction between the source node and the
destination node across one or more operational
and production-oriented high-performance
research and education networks.”

“The contest unit of measurement is […] bit-
meters/second.”

Ravot - Moroni - 412 May 2003

Internet2 LSR Contest (II)

“Instances of all hardware units and software
modules used to transfer contest data on the
source node, the destination node, the links, and
the routers must be offered for commercial sale
or as open source software to all U.S. members
of the Internet community by their respective
vendors or developers prior to or immediately
after winning the contest.”
Award classes: single or multiple TCP streams,
on top of IPv4 or IPv6
Generally available networks and equipment, vs.
lab prototypes

Ravot - Moroni - 512 May 2003

Former LSR

TCP/IPv4 single stream
By NIKHEF, Caltech and SLAC
Established on November 19th 2002
10978 Km of network: Geneva-
Amsterdam-Chicago-Sunnyvale
0.93 Gb/sec
10136.15 terabit-meters/second

Ravot - Moroni - 612 May 2003

Current LSR

TCP/IPv4 single stream
By Caltech, CERN, LANL and SLAC, within the
DataTAG project framework
Established on February 27th-28th 2003 by
Sylvain Ravot (Caltech) using IPERF
23888 Terabit-meters/second
10037 Km of network: Geneva-Chicago-
Sunnyvale (shorter distance than the former
LSR)
2.38 Gb/sec (sustained: a Terabyte of data
moved in an hour)

Ravot - Moroni - 712 May 2003

DataTAG project
Full project title: “Research and technological development
for a transatlantic GRID”
IST project (EU funded), supported by the NSF and the DoE
(Caltech): http://www.datatag.org
Partners: PPARC (UK), INRIA (FR), University of Amsterdam
(NL), INFN (IT) and CERN (CH)
Researchers also from Caltech, Los Alamos, SLAC and
Canada
Test-bed kernel: transatlantic STM-16 between Geneva
(CERN) and Chicago (StarLight), with interconnected
workstations at each side.
Test-bed extensions provided by GEANT, SURFnet, VTHD
and other partners, in Europe and North America

Ravot - Moroni - 812 May 2003

DataTAG as test-bed for LSR

Research on TCP as part of the DataTAG
programme
The Geneva-Chicago link was the main
environment for the LSR
Network extension made available: Chicago-
Sunnyvale STM-64
Router at Sunnyvale
10 GbE interfaces on DataTAG PCs

Ravot - Moroni - 912 May 2003

LSR network configuration

StarLight
Chicago (Illinois – USA)

CERN
Geneva (Switzerland)

Level3 PoP
SUNNYVALE (California – USA)

STMSTM--16 16 (T(T--systems)systems)
10 10 GbEGbE

Juniper T640Juniper T640
((TeraGridTeraGrid))

Cisco 12406Cisco 12406
(Cisco loan)(Cisco loan)

DataTAGDataTAG networknetwork

PC (10GbE)PC (10GbE)
(Intel loan)(Intel loan)

PC (10GbE)PC (10GbE)
(Intel loan)(Intel loan)

STMSTM--64 64 (Level3 loan)(Level3 loan)

Cisco 7609Cisco 7609
((DataTAGDataTAG))

Cisco 7606Cisco 7606
((DataTAGDataTAG))

Ravot - Moroni - 1012 May 2003

Establishing an LSR: hardware (I)

No LSR without good hardware
A lot of bandwidth: minimum 2.5 Gb/sec on the
whole path (thanks to Level3 for the STM-64 on
loan between Chicago and Sunnyvale)
Powerful routers (Cisco 7600 and GSR, Juniper
T640)
Powerful Linux PCs on both sides
Intel 10 GbE interfaces

Ravot - Moroni - 1112 May 2003

Establishing an LSR: hardware (II)

Linux PC at CERN:
Dual Intel® Xeon™ processors, 2.40GHz with 512K L2 cache Dual Intel® Xeon™ processors, 2.40GHz with 512K L2 cache
SuperMicroSuperMicro P4DP8P4DP8--G2 Motherboard G2 Motherboard
Intel E700 chipset Intel E700 chipset
2 GB RAM,PC2100 ECC Reg. DDR 2 GB RAM,PC2100 ECC Reg. DDR
Hard drive: 1 x 140 GB Hard drive: 1 x 140 GB -- Maxtor ATAMaxtor ATA--133 133
On board Intel 82546EB dual port Gigabit Ethernet controller On board Intel 82546EB dual port Gigabit Ethernet controller
4U Rack4U Rack--mounted servermounted server

Linux PC at Sunnyvale:
Dual Intel® Xeon™ processors , 2.40GHz with 512K L2 cacheDual Intel® Xeon™ processors , 2.40GHz with 512K L2 cache
SuperMicroSuperMicro P4DPEP4DPE--G2 Motherboard G2 Motherboard
2 GB RAM, PC2100 ECC Reg. DDR 2 GB RAM, PC2100 ECC Reg. DDR
2* 3ware 75002* 3ware 7500--8 RAID controllers 8 RAID controllers
16 Western Digital IDE disk drives for RAID and 1 for system 16 Western Digital IDE disk drives for RAID and 1 for system
2 Intel 82550 fast Ethernet 2 Intel 82550 fast Ethernet
2*2*SysKonnectSysKonnect Gigabit Ethernet card SKGigabit Ethernet card SK--9843 SK9843 SK--NET GE SX NET GE SX
4U Rack4U Rack--mounted server mounted server
480W to run 600W to spin up480W to run 600W to spin up

Ravot - Moroni - 1212 May 2003

Establishing an LSR: hardware (III)

Intel 10 GbE interfaces: Intel Pro/10 GbE-
LR
Not yet commercially available when the
LSR was set, but announced as
commercially available shortly afterwards

Ravot - Moroni - 1312 May 2003

Establishing an LSR: standard
tuning

MTU set to 9000 bytes

TCP window size increased from the Linux
default of 64K: essential over long distance

But standard Linux kernel (2.4.20)

Standard tuning is not enough for LSR: why?

Ravot - Moroni - 1412 May 2003

TCP WAN problems

Responsiveness to packet losses is proportional
to the square of the RTT: R=C*(RTT**2)/2*MSS
(where C is the link capacity and MSS is the max
segment size). This makes it very difficult to take
advantage of full capacity over long-distance
WAN: not a real problem for standard traffic on a
shared link, but a serious penalty for LSR
Slow start mode is “too” slow using default
parameters: they are good for standard traffic,
but not for LSR

Ravot - Moroni - 1512 May 2003

Example: recovering from a packet
loss

TCP Throughput CERN-Chicago over the 622 Mbit/s link

0

50

100

150

200

0 200 400 600 800 1000 1200 1400 1600

Time (s)

Th
ro

ug
hp

ut
 (M

bi
t/s

)

6 min6 min

TCP reactivity
Time to increase the throughput by 120 Mbit/s is
larger than 6 min for a connection between Chicago
and CERN.

Packet losses is a disaster for the overall
throughput

Ravot - Moroni - 1612 May 2003

Example: slow startExample: slow start
vs. congestion avoidancevs. congestion avoidance

Cwnd average of the last 10 samples.

Cwnd average over the life of the
connection to that point

SSTHRESH

Slow start Congestion Avoidance

Ravot - Moroni - 1712 May 2003

Establishing an LSR: what goes
wrong

Behaviour of the TCP stack: if C is very small, it
keeps the responsiveness low enough for any
terrestrial RTT. Therefore modern, fast WAN
links are “bad” for TCP performance
TCP tries to increase its window size until
something breaks (packet loss, congestion, …);
then restarts from a half of the previous value
until it breaks again. This gradual approximation
process takes very long over long distance and
degrades performance

Ravot - Moroni - 1812 May 2003

Establishing an LSR: further
tuning

Knowing a priori the available bandwidth,
prevent TCP from trying larger windows by
restricting the amount of buffers it may use:
without buffers, it won’t try to use larger windows
and packet losses can be avoided
The product C*RTT yields the optimal TCP
window size for a link of capacity C
So, allocate just enough buffers to let TCP
squeeze the maximum performance from the
existing bandwidth and nothing else

Ravot - Moroni - 1912 May 2003

Further tuning: Linux
implementation

Tuning TCP buffers (numbers for STM-16):
echo “4096 87380 128388607” > echo “4096 87380 128388607” >
/proc/sys/net/ipv4/tcp_rmem /proc/sys/net/ipv4/tcp_rmem
echo “4096 65530 128388607” > echo “4096 65530 128388607” >
/proc/sys/net/ipv4/tcp_wmem /proc/sys/net/ipv4/tcp_wmem
echo 128388607 > /proc/sys/net/core/wmem_max echo 128388607 > /proc/sys/net/core/wmem_max
echo 128388607 > /proc/sys/net/core/rmem_maxecho 128388607 > /proc/sys/net/core/rmem_max

Tuning the network device buffers:
/sbin/ifconfig eth1 txqueuelen 10000 /sbin/ifconfig eth1 txqueuelen 10000
/sbin/ifconfig eth1 mtu 9000/sbin/ifconfig eth1 mtu 9000

Both on sender and receiver

Ravot - Moroni - 2012 May 2003

Even further tuning: Linux
implementation

TCP slow start mode vs. congestion avoidance
mode is another performance penalty in the
sender for the LSR
On Linux (sender side only):

sysctl sysctl --w net.ipv4.route.flush=1w net.ipv4.route.flush=1

This prevents TCP from using any previously
cached window value, i.e. speeds up slow start
mode and gets to congestion avoidance mode at
exponential speed (otherwise the growth of the
congestion window would start at half of some
previously cached value)

Ravot - Moroni - 2112 May 2003

IPERF parameters

On the sender:
iperf iperf --c 192.91.239.213 c 192.91.239.213 --i 5 i 5 --P 3 P 3 --w 40M w 40M --t 180t 180

On the receiver:
iperfiperf--1.6.5 1.6.5 --s s --w 128Mw 128M

IPERF is available at http://dast.nlanr.net

Ravot - Moroni - 2212 May 2003

Conclusions: how useful in
practice?

The LSR result cannot be immediately translated
into practical general-purpose recommendations:
it relies on

some some a prioria priori knowledge (the physical link speed)knowledge (the physical link speed)
dedicated bandwidthdedicated bandwidth
ad hocad hoc TCP tuning: good for LSR, not for generalTCP tuning: good for LSR, not for general--
purpose trafficpurpose traffic

Nevertheless, work is ongoing for a more
modern TCP stack: the new LSR demonstrates
that fast WAN TCP is possible in practice, by
tweaking TCP a bit

Ravot - Moroni - 2312 May 2003

Conclusions: sustained
throughput

The LSR definition has only very limited
provisioning for requiring sustained throughput
(100 Megabytes are not much)
However the achieved LSR shows that high
sustained throughput is in principle possible with
TCP over long distance
Former results could sustain the throughput only
for 40-60 seconds, before some TCP feedback
mechanism kicked in

Ravot - Moroni - 2412 May 2003

Other remarks

The bottleneck for things like the LSR is now in
the end hosts: no non-trivial tuning was needed
on the network where the LSR was established
Incidentally, although single-stream, the new
LSR was also good enough to establish the new
LSR for multiple IPv4 streams
No TCP packet was lost during the LSR trial
window
Details of the new record are not published on
http://lsr.internet2.edu yet

Ravot - Moroni - 2512 May 2003

Acknowledgements: people

Sylvain Ravot (working for Caltech at
CERN)
Wu-Chun Feng (LANL)
Les Cottrell (SLAC)

Ravot - Moroni - 2612 May 2003

Acknowledgements:
industrial partners

12 May 2003

Acknowledgements:
organisations

	Internet data transfer record between CERN and California
	Summary
	Internet2 LSR Contest (I)
	Internet2 LSR Contest (II)
	Former LSR
	Current LSR
	DataTAG project
	DataTAG as test-bed for LSR
	Establishing an LSR: hardware (I)
	Establishing an LSR: hardware (II)
	Establishing an LSR: hardware (III)
	Establishing an LSR: standard tuning
	TCP WAN problems
	Example: recovering from a packet loss
	Establishing an LSR: what goes wrong
	Establishing an LSR: further tuning
	Further tuning: Linux implementation
	Even further tuning: Linux implementation
	IPERF parameters
	Conclusions: how useful in practice?
	Conclusions: sustained throughput
	Other remarks
	Acknowledgements: people
	Acknowledgements: industrial partners
	Acknowledgements: organisations

